STATISTIQUES DESCRIPTIVES

En italien, « stato » désigne l'état. Ce mot a donné « statista » pour « homme d'état ». En 1670, le mot est devenu en latin « statisticus » pour signifier ce qui est relatif à l'état. Les statistiques ont en effet d'abord désigné l'étude des faits sociaux relatifs à l'état.

Partie 1: Moyenne, médiane, étendue

1. Moyenne

<u>Méthode</u>: Calculer une moyenne

Les deux séries suivantes présentent les notes obtenues par 2 élèves :

Nadir: 4;6;18;8;17;11;12;18

Julie: 15;9;14;13;10;12;12;11;10

Calculer les moyennes des notes de Nadir et Julie.

Correction

- Moyenne de Nadir = (4+6+18+8+17+11+12+18): 8=11,75
- Moyenne de Julie = $(15 + 9 + 14 + 13 + 10 + 12 + 12 + 11 + 10) : 9 \approx 11,8$

Propriété de linéarité de la moyenne : Soit a et b deux nombres réels.

- Si dans une série, on multiplie toutes les valeurs par a, alors la moyenne est multipliée par a.
- Si dans une série, on ajoute b à toutes les valeurs, alors on ajoute b à la moyenne.

Méthode : Utiliser la propriété de linéarité de la moyenne

On a relevé le prix au litre de l'essence dans différentes stations :

- a) Calculer la moyenne des prix.
- b) Conséquence de la crise sur les matières premières, on constate une hausse des prix de 30% le mois suivant. Calculer le prix moyen après augmentation.
- c) Pour compenser cette hausse, l'état décide d'attribuer une remise de 15 centimes par litre d'essence. Calculer le prix moyen après remise et comparer avec le prix moyen avant la crise.

Correction

a) Moyenne = (1.5 + 1.44 + 1.51 + 1.62 + 1.58) : 5 = 1.53. Le prix moyen dans les 5 stations est de $1.53 \in$.

b) Augmenter un nombre de 30%, c'est le multiplier par 1 + 0.30 = 1.30.

Si toutes les valeurs de la série sont multipliées par 1,30, alors la moyenne est multipliée par 1,30.

Moyenne après augmentation : $1,53 \times 1,30 = 1,989$.

Le prix moyen le mois suivant est de 1,989 €.

c) Si on soustrait 0,15 à toutes les valeurs de la série, alors on soustrait 0,15 à la moyenne.

Moyenne après réduction : 1,989 - 0,15 = 1,839.

Le prix moyen après remise est de $1,839 \in$. Il reste supérieur au prix moyen avant la crise qui était de $1,55 \in$.

2. Médiane (Rappel)

Méthode : Calculer une médiane

On rappelle les notes obtenues par Nadir et Julie :

Nadir: 4;6;18;8;17;11;12;18

Julie: 15;9;14;13;10;12;12;11;10

Calculer les médianes des notes des deux élèves.

Correction

Pour déterminer les notes médianes, il faut <u>ordonner</u> les séries. La médiane partage la série en <u>deux groupes de même effectif</u>.

• Nadir : $\frac{4}{4} = \frac{6}{8} = \frac{11}{12} = \frac{17}{18} = \frac{11+12}{2} = 11,5$

• Julie : 9 10 10 11 12 13 14 15 Médiane = 12

3. <u>Étendue (Rappel)</u>

<u>Définition</u>: **Étendue** = Plus grande valeur — Plus petite valeur

Méthode: Calculer une étendue

On rappelle les notes obtenues par Nadir et Julie :

Nadir: 4; 6; 18; 8; 17; 11; 12; 18

Julie: 15;9;14;13;10;12;12;11;10

Calculer les étendues des notes de Nadir et Julie.

Correction

• Nadir: La plus grande valeur est 18 et la plus petite valeur est 4 donc:

Étendue = 18 - 4 = 14

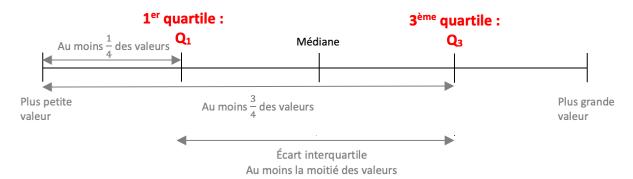
• Julie : Étendue = 15 - 9 = 6

Partie 2 : Quartiles, écart interquartile

Définitions:

- **Premier quartile**, noté $Q_1 = 1^{\text{ère}}$ valeur dépassant le quart de l'effectif ordonné.
- Troisième quartile, noté Q_3 = 1^{ère} valeur dépassant les trois-quarts de l'effectif ordonné.

<u>Définition</u>: **Écart interquartile** = $Q_3 - Q_1$



Méthode : Calculer les quartiles

On rappelle les notes obtenues par Nadir et Julie :

Nadir: 4;6;18;8;17;11;12;18

Julie: 15;9;14;13;10;12;12;11;10

Calculer les quartiles Q_1 et Q_3 et l'écart interquartile des séries de : a) Nadir b) Julie

Correction

a) Pour déterminer les quartiles, il faut ordonner la série.

Nadir:

4 6 8

11 12 17 18

• 1^{er} quartile Q_1 = 1^{ère} valeur dépassant le quart de l'effectif. L'effectif total est de 8, on calcule le quart de 8 :

 $\frac{1}{4} \times 8 = 2$, Q_1 est la 2^e valeur de la série ordonnée. Donc : $Q_1 = 6$.

« Un quart, au moins, des notes de Nadir sont inférieures ou égales à 6. »

• 3^e quartile Q_3 = 1^{ere} valeur dépassant les trois-quarts de l'effectif.

L'effectif total est de 8, on calcule les trois-quarts de 8 :

$$\frac{3}{4} \times 8 = 6$$
: Q_3 est la 6^e valeur de la série ordonnée. Donc $Q_3 = 17$.

- « Trois-quarts, au moins, des notes de Nadir sont inférieures ou égales à 17. »
- L'écart interquartile est égal à $Q_3 Q_1 = 17 6 = 11$.
- « La moitié, au moins, des notes de Nadir sont comprises entre 6 et 17. »
- b) Julie:
- 9
- 10 (10) 11
 - 1 1
- 12 12
- 12 (13) 14
 - 14 15

• L'effectif total est de 9.

$$\frac{1}{4} \times 9 = 2,25 \rightarrow 3$$
, Q_1 est la 3^e valeur de la série ordonnée. Donc $Q_1 = 10$.

$$ullet$$
 $rac{3}{4} imes 9=6,75 o 7$, Q_3 est la 7 $^{
m e}$ valeur de la série ordonnée. Donc $Q_3=13$.

ullet L'écart interquartile est égal à $Q_3-Q_1=13-10=3.$

Partie 3: Moyenne pondérée, variance, écart-type

1. Moyenne pondérée

Définition :

La **moyenne pondérée** \bar{x} d'une série dont les valeurs sont $x_1, x_2, ...$ et les effectifs correspondants $n_1, n_2, ...$ est égale à $\bar{x} = \frac{n_1 x_1 + n_2 x_2 + \cdots}{n_1 + n_2 + \cdots}$

Méthode: Calculer une moyenne pondérée

Le tableau suivant présente la répartition des tailles des élèves d'une classe de 2^{nde}.

Taille	[150;155[[155;160[[160;165[[165;170[[170;175[[175;180[
Intervalle centré x_i	152	157				
Effectif n_i	2	4	7	8	3	3
Fréquence en %						

- a) Compléter la ligne des fréquences.
- b) Compléter la ligne des intervalles centrés et en déduire la moyenne pondérée des tailles.

Correction

a) L'effectif total est : 2 + 4 + 7 + 8 + 3 + 3 = 27.

Taille	[150;155[[155;160[[160;165[[165;170[[170;175[[175;180[
Effectif n_i	2	4	7	8	3	3
Fréquence en %	$\frac{2}{27}$ $\approx 0.07 = 7\%$	15 %	26 %	30 %	11 %	11 %

b)

Intervalle centré x_i	152	157	162	167	172	177
Effectif n_i	2	4	7	8	3	3

$$\bar{x} = \frac{2 \times 152 + 4 \times 157 + 7 \times 162 + 8 \times 167 + 3 \times 172 + 3 \times 177}{27} = \frac{4449}{27} \approx 164,8$$

La taille moyenne des élèves est d'environ 164,8 cm.

2. Variance, écart-type

Définitions :

• La **variance** V d'une série, de moyenne \bar{x} , dont les valeurs sont $x_1, x_2, ...$ et les effectifs correspondants sont $n_1, n_2, ...$ est égale à :

$$V = \frac{n_1 \times (x_1 - \bar{x})^2 + n_2 \times (x_2 - \bar{x})^2 + \cdots}{n_1 + n_2 + \cdots}$$

• L'écart-type σ est égal à : $\sigma = \sqrt{V}$.

Remarque:

L'écart-type exprime la dispersion des valeurs de la série autour de sa moyenne.

Méthode : Calculer la variance et l'écart-type d'une série

Le tableau présente une série statistique :

x_i	1	2	3	4
n_i	5	9	3	1

Calculer la moyenne pondérée, la variance et l'écart-type de la série.

Correction

L'effectif total est : 5 + 9 + 3 + 1 = 18

• Calcul de la moyenne \bar{x} :

$$\bar{x} = \frac{5 \times 1 + 9 \times 2 + 3 \times 3 + 1 \times 4}{18} = \frac{36}{18} = 2$$

• Calcul de la variance *V* :

On complète le tableau :

x_i	1	2	3	4
n_i	5	9	3	1
$x_i - \bar{x}$	1 - 2 = -1	0	1	2
$(x_i - \bar{x})^2$	$(-1)^2 = 1$	0	1	4
$n_i(x_i-\bar{x})^2$	$5 \times 1 = 5$	0	3	4

On fait la somme des valeurs obtenues dans la dernière ligne pour calculer la variance : $V=\frac{5+0+3+4}{18}=\frac{12}{18}=\frac{2}{3}$

$$V = \frac{5+0+3+4}{18} = \frac{12}{18} = \frac{2}{3}$$

• Calcul de l'écart-type σ :

$$\sigma = \sqrt{V} = \sqrt{\frac{2}{3}} \approx 0.82.$$